Characterization of a single mutation in TraQ in a strain of Escherichia coli partially resistant to Qβ infection

نویسندگان

  • Akiko Kashiwagi
  • Hikari Kitamura
  • Fumie Sano Tsushima
چکیده

Bacteria and virulent bacteriophages are in a prey-predator relationship. Experimental models under simplified conditions with the presence of bacteria and bacteriophages have been used to elucidate the mechanisms that have enabled both prey and predator to coexist over long periods. In experimental coevolution conducted with Escherichia coli and the virulent RNA bacteriophage Qβ in serial transfer, both coexisted for at least for 54 days, during which time they continued to change genetically and phenotypically. By day 16, an E. coli strain partially resistant to Qβ appeared and caused an approximately 10(4)-fold decrease in Qβ amplification. Whole-genome analysis of this strain suggested that a single mutation in TraQ was responsible for the partially resistant phenotype. TraQ interacts with propilin, encoded by the traA gene and a precursor of pilin, which is a component of the F pilus. The present study was performed to elucidate the mechanism underlying the coexistence of E. coli and Qβ by investigating how a mutation in TraQ altered the physiological state of E. coli, and thus the amplification of Qβ. Overexpression of wild-type TraQ in the partially resistant E. coli strain resulted in recovery of both TraA protein content, including propilin and pilin, and Qβ amplification to levels comparable to those observed in the susceptible strain. Intriguingly, overexpression of the mutant TraQ in the partially resistant strains also increased the levels of TraA protein and Qβ amplification, but these increases were smaller than those observed in the wild-type strain or the partially resistant strain expressing wild-type TraQ. The results of this study represent an example of how E. coli can become partially resistant to RNA bacteriophage infection via changes in a protein involved in maturation of a receptor rather than in the receptor itself and of how E. coli can stably coexist with virulent RNA bacteriophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .

Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...

متن کامل

Production, Purification and Characterization of Chicken Egg Yolk Monoclonal Antibody Against Colonization factor antigen -1 of Enterotoxigenic Escherichia coli Causing Diarrhea

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in both humans and animals. The contaminated food and water are the most common vehicles for ETEC infection. The colonization factor antigen (CFA-1) is a fimbriae protein that promotes adherence of the ETEC strain to the epithelium of the small intestine of the host. In this study IgY proteins were produced against the CFA-1 of ETEC in imm...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia coli

According to the Red Queen hypothesis or arms race dynamics, coevolution drives continuous adaptation and counter-adaptation. Experimental models under simplified environments consisting of bacteria and bacteriophages have been used to analyze the ongoing process of coevolution, but the analysis of both parasites and their hosts in ongoing adaptation and counter-adaptation remained to be perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015